James Ghawaly

James Ghawaly

Assistant Professor

3209B Patrick F Taylor Building, Baton Rouge, LA 70803
Louisiana State University

jghawaly@lsu.edu

Educational Background

PhD Nuclear Engineering, University of Tennessee, Knoxville, 2020

MSc Computer Engineering, University of Tennessee, Knoxville, 2020

BSc Nuclear Engineering, University of Tennessee, Knoxville, 2017

 

Research Interests

Artificial intelligence, cybersecurity, AI security, machine learning, neural network architecture, neuromorphic computing, nuclear proliferation detection

 

Teaching Responsibilities

CSC 2262: Numerical Methods

HNRS 3025/3035: Large Language Model (LLM) Development and Deployment for Real-World Applications

 

Selected Publications

Bandstra, M. S., Curtis, J. C., Ghawaly Jr, J. M., Jones, A. C., & Joshi, T. H. (2023). Explaining machine-learning models for gamma-ray detection and identification. Plos one, 18(6), e0286829.

Ghawaly, J., Young, A., Nicholson, A., Witherspoon, B., Prins, N., Swinney, M., ... & Patel, K. (2023, August). Performance Optimization Study of the Neuromorphic Radiation Anomaly Detector. In Proceedings of the 2023 International Conference on Neuromorphic Systems (pp. 1-7).

Ghawaly Jr, J. M., Nicholson, A. D., Archer, D. E., Willis, M. J., Garishvili, I., Longmire, B., ... & Cook, M. T. (2022). Characterization of the autoencoder radiation anomaly detection (arad) model. Engineering Applications of Artificial Intelligence, 111, 104761.

Ghawaly, J., Young, A., Archer, D., Prins, N., Witherspoon, B., & Schuman, C. (2022, July). A neuromorphic algorithm for radiation anomaly detection. In Proceedings of the International Conference on Neuromorphic Systems 2022 (pp. 1-6).

Biegalski, S. R., Tsvetkov, P. V., Tao, Y., Sobes, V., Pazdernik, K., Labov, S., ... & Williams, D. F. (2021, July). 2020 ETI Annual Summer School: Data Science and Engineering. In 2021 ASEE Virtual Annual Conference Content Access.

Ghawaly, J. M., Nicholson, A. D., Peplow, D. E., Anderson-Cook, C. M., Myers, K. L., Archer, D. E., ... & Quiter, B. J. (2020). Data for training and testing radiation detection algorithms in an urban environment. Scientific data, 7(1), 1-6.